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Abstract 

Background:  This study aims to develop a machine learning-based application in a real-world medical domain to 
assist anesthesiologists in assessing the risk of complications in patients after a hip surgery.

Methods:  Data from adult patients who underwent hip repair surgery at Chi-Mei Medical Center and its 2 branch 
hospitals from January 1, 2013, to March 31, 2020, were analyzed. Patients with incomplete data were excluded. A 
total of 22 features were included in the algorithms, including demographics, comorbidities, and major preoperative 
laboratory data from the database. The primary outcome was a composite of adverse events (in-hospital mortality, 
acute myocardial infarction, stroke, respiratory, hepatic and renal failure, and sepsis). Secondary outcomes were inten‑
sive care unit (ICU) admission and prolonged length of stay (PLOS). The data obtained were imported into 7 machine 
learning algorithms to predict the risk of adverse outcomes. Seventy percent of the data were randomly selected for 
training, leaving 30% for testing. The performances of the models were evaluated by the area under the receiver oper‑
ating characteristic curve (AUROC). The optimal algorithm with the highest AUROC was used to build a web-based 
application, then integrated into the hospital information system (HIS) for clinical use.

Results:  Data from 4,448 patients were analyzed; 102 (2.3%), 160 (3.6%), and 401 (9.0%) patients had primary com‑
posite adverse outcomes, ICU admission, and PLOS, respectively. Our optimal model had a superior performance 
(AUROC by DeLong test) than that of ASA-PS in predicting the primary composite outcomes (0.810 vs. 0.629, p < 0.01), 
ICU admission (0.835 vs. 0.692, p < 0.01), and PLOS (0.832 vs. 0.618, p < 0.01).

Conclusions:  The hospital-specific machine learning model outperformed the ASA-PS in risk assessment. This web-
based application gained high satisfaction from anesthesiologists after online use.
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Introduction
A comprehensive preoperative evaluation can enhance 
the quality of patient care and is associated with a 
reduced mortality rate [1–3]. In preoperative evalu-
ation clinics, the anesthesiologist must evaluate the 

patient’s medical history and laboratory data, determine 
the patient’s physical status, and draw up a preopera-
tive management plan in a limited time. After the initial 
assessment, the anesthesiologist discusses these risks 
with the patient and the surgical team [2]. In the case of 
emergency or urgent surgeries, all these tasks must be 
achieved with high efficiency [4].

The incidence of hip fractures is gradually increas-
ing because the aging population is continually growing, 
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and it is causing a heavy burden on society [5, 6]. Almost 
all patients with hip fractures would require surgi-
cal treatment, and anesthesia intervention is inevita-
ble. These patients are mostly geriatric and have many 
comorbidities.

Several estimation tools have been used to help phy-
sicians assess operative risks [7–9]. These models range 
from simple scoring systems, such as the American Soci-
ety of Anesthesiologist-Physical Status (ASA-PS) [10], 
to more complex calculators, such as the Surgical Risk 
Preoperative Assessment System (SURPAS) and the 
American College of Surgeons National Surgical Qual-
ity Improvement Program (ACS-NSQIP®) Surgical 
Risk Calculator [11–13]. Although the former is easy to 
use, it ignores many important parameters, such as sex, 
age, comorbidities, and laboratory data; while the latter 
includes more parameters, it requires tedious work. For 
instance, the ACS-NSQIP, which is an open-access web-
based online tool that is currently gaining worldwide 
acceptance, involves manually entering 19 to 21 patient-
specific variables [13–15]. In a busy medical ecology that 
requires efficiency, developing an automated preopera-
tive evaluation system that incorporates multiple param-
eters is imminent.

We aimed to develop a machine learning-based appli-
cation that can assist anesthesiologists in assessing spe-
cific adverse outcomes for patients required to undergo 
hip repair surgery. We hypothesized that a machine 
learning algorithm, which includes variables such as 
patient demographics, comorbidities, laboratory data, 
and anesthesiologists’ initial assessment, may have supe-
rior performance in risk assessment than the ASA-PS 
scoring. Through the assistance of the data-driven appli-
cation, anesthesiologists will be able to effectively evalu-
ate patients and precisely inform them of the operative 
risks, allowing them to have shared decision-making in a 
real-world medical domain.

Methods
Study design
We established a multidisciplinary team including anes-
thesiologists, data scientists, and information engineers 
for this retrospective study. Data were extracted from 
the Chi-Mei Medical Center’s hospital information sys-
tems (HIS) database to build the AI prediction models. 
We deleted the medical record number and all types of 
personal identification of each patient to protect their 
privacy.

All methods were carried out per relevant guidelines 
and regulations of Chi Mei Medical Center. The construc-
tion of the database was approved by the institutional 
review board (Serial No. 10906–008). Informed consent 
was waived because of the retrospective design of the 

study, which only involved secondary analysis of exist-
ing data and had no direct patient contact. After machine 
learning model training and performance testing, the 
optimal models were deployed into the existing HIS to 
assist anesthesiologists in performing preoperative risk 
assessment for patients with hip fractures (Fig. 1).

Study setting and patient selection
Adult patients aged 20 years and above who underwent 
surgical treatment of a hip fracture at Chi Mei Medical 
Center and its 2 branch hospitals in Tainan City, Taiwan, 
from January 1, 2013, to March 31, 2020, were selected 
based on current procedural terminology (CPT) codes. 
The CPT codes for enrollment included hip fixation 
codes (27,235, 27,236, 27,244, and 27,245), hemiarthro-
plasty (27,125), and total hip arthroplasty (27,130) with 
an admission diagnosis of hip fracture (ICD-9 codes 
820.x or ICD-10 codes S70-S79). Patients with incom-
plete perioperative data, those whose body weight was 
30  kg and below, and those whose height was 100  cm 
and below were excluded from the study. A total of 5,301 
patients were initially reviewed for this study, but only 
4,448 patients were included after considering the exclu-
sion criteria.

Feature variables
Using a similar method from previous studies [16–18], 
established clinical importance and clinical expert opin-
ion were used to select 22 preoperative variables from 
the HIS dataset as inputs to the algorithm for calculat-
ing the risk of adverse events of interest. The feature 
variables retrieved from the HIS database include (1) 
patient demographics (e.g., age, sex, body mass index, 
and smoking status); (2) preoperative comorbidities (e.g., 
heart diseases such as coronary artery disease, conges-
tive heart failure, old myocardial infarction, previous 
cerebral stroke, dialysis use, presence of COPD; (3) labo-
ratory values (e.g., serum sodium, white blood cell count, 
hematocrit, platelet count, creatinine, blood urea nitro-
gen, creatinine, albumin, and prothrombin time); and (4) 
operative and anesthetic variables (e.g., ASA-PS status, 
mode of anesthesia, and the anticipated arterial line and 
central venous pressure monitoring). These features were 
integrated into the algorithm for machine learning. To 
develop the models, the patients were randomly split into 
a training cohort (70%) and a testing cohort (30%). This 
separation helped ensure that the test set was kept com-
pletely independent from the training set.

Study outcomes
This study’s primary outcome was a composite of postop-
erative adverse events, including (1) in-hospital mortal-
ity and death within 48 h after discharge (discharge death 
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code); (2) acute stroke (ICD-9-CM codes 430 to 436 and 
997.02, and ICD-10-CM codes I609, I619, I6789); (3) 
acute myocardial infarction (AMI) (ICD-9-CM code 410, 
and ICD-10-CM codes I21 or I23); (4) acute respiratory 
failure (ICD-9-CM codes 518.81 to 518.82, 518.84, and 
518.5, and ICD-10-CM codes J96); (5) sepsis (ICD-9-CM 
codes 038, and ICD-10-CM codes R65); (6) acute liver 
failure (ICD-9-CM codes 570, and ICD-10-CM codes 
K7200); and (7) acute renal failure (ICD-9-CM codes 
584.9 and ICD-10-CM codes 570, and ICD-10-CM codes 
with ICD-10-CM codes K7200); and (7) dialysis code 
(ICD-9-CM codes 584). Moreover, postoperative inten-
sive care unit (ICU) admission and prolonged length of 
stay (PLOS) were set as secondary outcomes.

Machine learning algorithms
The models were trained with 7 machine learning algo-
rithms consisting of (1) logistic regression, (2) random 
forest, (3) k nearest neighbor (KNN), (4) support vector 
machines (SVM), (5) light gradient boosting machine 
(light GBM), (6) eXtreme gradient boosting (XGBoost), 
and (7) deep learning of multilayer perception (MLP). 
To address the issue of class imbalance in the training 
cohort, the synthetic minority oversampling technique 

was utilized. Python programming language with scikit.
learn machine learning library was used for model 
building. Grid searching with 5-fold cross-validation 
for hyperparameter tuning for each algorithm was per-
formed to obtain the optimal models. The goal of the 
algorithms is to predict the primary and secondary 
outcomes.

Model performance
Each model was used to predict the test set. The speci-
ficity, sensitivity, accuracy, and area under the receiver 
operating characteristic curve (AUROC) were calculated 
and the models’ predictive performances were compared 
based on the AUROC value.

Implementation of web‑service application to HIS
The optimal algorithm with the highest AUROC was 
used to build a web-based application, then integrated 
into the HIS for pre-anesthetic patient evaluation.

Anesthesiologist satisfaction score after AI‑assisted risk 
assessment
After each completion of the AI-assisted risk assessment, 
the system automatically requests its users to grade their 

Fig. 1  Flow chart of study
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level of satisfaction from 0 (most dissatisfied) to 5 (highly 
satisfied). The first month, which was done online, was 
employed as the benchmark reference to compare the 
changes in the satisfaction of anesthesiologists during the 
study period from July 2020 to April 2021.

Incidence of adverse outcomes before and after 
web‑based application deployment in HIS
We deployed the AI-assisted risk assessment applica-
tion online beginning July 1, 2020. To assess whether the 
developed application improved the medical outcomes, 
we compared the incidences of primary composite 
adverse outcomes, ICU admission, and PLOS before (July 
2019 to April 2020) and after (July 2020 to April 2021) 
AI-assisted risk assessment.

Statistical analysis
Descriptive statistical analysis of the data was performed 
using SPSS 13.0 for Windows (SPSS, Inc., Il, USA). Con-
tinuous variables were defined as the means and standard 
deviations or medians and ranges. Countable variables 
were defined with numbers and percentages. The mod-
els’ predictive performances were compared with each 
other and with conventional ASA-PS risk stratification 
based on the AUROC value using the Delong test [19]. A 
series of one-way analyses of variance were conducted to 
examine the differences in the satisfaction score among 
the five-month groups. After, Tukey’s honestly signifi-
cant difference post hoc test was performed to detect the 
intergroup differences. The level of significance was set at 
a p-value less than 0.01.

Results
Demographics
From January 1, 2013, to March 31, 2020, a total of 5,301 
adult patients who had hip fractures and received hip 
repair surgery under GA or NA were identified. After 
removing excluded patients, data from 4,448 patients 
underwent analysis. From this, 3,114 patients (70%) were 
randomly allocated for training the machine learning 
models, and 1,334 patients (30%) were set as the valida-
tion cohort (Fig. 1).

Patient demographics and characteristics of the train-
ing and testing data sets are summarized in Table 1. The 
mean age of the patients was 65.3  years, and they are 
mostly females (57.6%). Approximately 70.8% of them 
were stratified as ASA-PS 3 status. The event rates were 
2.3% (N = 120), 3.6% (N = 160), and 9.0% (N = 401) for 
composite primary adverse events, ICU admission, and 
PLOS, respectively. As shown in Table  1, patients with 
primary composite adverse events and ICU admis-
sion were older, mostly males, had anemia, longer 

prothrombin time, and activated partial thromboplas-
tin time (aPTT), and had comorbidities such as chronic 
respiratory diseases, cancer, heart disease, dementia, or 
advanced chronic kidney disease (stage 4 and 5).

Correlation  analysis (Table  2) identified the correla-
tion between each feature’s outcome. For composite pri-
mary adverse outcomes, the most relevant features were 
anticipated intraoperative arterial line and central venous 
catheter monitoring, preoperative hemoglobin, and res-
piratory comorbidity; for ICU admission, the most rel-
evant features were ASA-PS status, arterial line central 
venous pressure monitoring, and preoperative hemo-
globin; and for PLOS, the key factors included emergency 
surgery, ASA-PS, central venous monitoring, ALT, eGFR, 
P.T., and comorbid of respiratory disease.

Prediction of primary composite adverse outcomes
In the machine learning prediction of primary com-
posite adverse outcomes such as in-hospital mortality, 
mortality within 48  h after discharge, and major organ 
injury, the sensitivity by logistic regression, SVM, and 
lightGBM all reached 0.710; the SVM had the highest 
specificity (0.716) followed by KNN (0.711) (Table  3). 
All models, except KNN, achieved high AUROCs which 
were between 0.734 (XGBoost, 95% C.I.: 0.636 ~ 0.831) 
and 0.794 (Logistic regression, 95% C.I.: 0.718 ~ 0.869) 
(Appendix 1).

Prediction of postoperative ICU admission
As shown in Table  4, in the prediction of ICU admis-
sion, MLP (0.812) and logistic regression (0.792) had the 
highest sensitivity. Further, logistic regression (0.791), 
lightGBM (0.769), and the random forest (0.760) had the 
highest specificity. Moreover, logistic regression, light-
GBM, and the random forest had the highest accuracy 
(between 0.760 to 0.791). Except for KNN and SVM, all 
models had AUROCs between 0.825 (XGBoost, 95% C.I.: 
0.772 ~ 0.878) and 0.856 (Logistic regression, 95% C.I.: 
0.804 ~ 0.908) (Appendix 2).

Prediction of prolonged length‑of‑stay (PLOS)
The results of model prediction on PLOS are shown in 
Table  5. The random forest and lightGBM had higher 
sensitivity (0.783 and 0.767, respectively) and specific-
ity (0.783 and 0.774, respectively) than other algorithms. 
Moreover, the random forest had the best performance 
with the highest AUROCs (0.854; 95% C.: 0.818 ~ 0.890) 
(Table 5 and Appendix 3).

The performance of machine learning models and ASA‑PS
Based on the results, an AI web-based application 
was constructed using logistic regression for adverse 
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outcomes and ICU admission, and the random forest for 
PLOS. Figure 2 shows a snapshot of the AI web service 
application for predicting adverse outcomes in the pre-
anesthetic visit clinic.

The results in Table  6 indicate that the machine 
learning AI web-based application had superior 
AUROC scores (Delong test, P < 0.001) than ASA-PS 
stratification in terms of primary composite adverse 

Table 1  Demographic data of study patients

Primary composite adverse outcomes included in-hospital mortality (and death in 48 h after discharge), sepsis, acute myocardial infarction, acute stroke, respiratory, 
liver and renal failure.

Abbreviations: BMI body mass index, ASA-PS American society of anesthesiologist-physical status, GA general anesthesia, CVC central venous catheter, ALT alanine 
aminotransferase, eGFR estimated glomerular filtration rate, Hb hemoglobin, CKD chronic kidney disease

Demographics Total Primary composite adverse 
outcomes

ICU admission Prolonged hospital stay

No Yes P-Value No Yes P-Value No Yes P-Value

Cases,n (%) 4448 (100) 4346 (97.7) 102 (2.3) 4288 (96.4) 160 (3.6) 4047 (91.0) 401 (9.0)

Age mean (SD) 65.3 (18.6) 65.1 (18.6) 70.9 (18.4) 0.003 65.2 (18.6) 67.7 (20.2) 0.129 65.8 (18.4) 60.0 (20.5)  < 0.001

Sex, male, n (%) 1885 (42.4) 1831 (42.1) 54 (52.9) 0.037 1801 (42.0) 84 (52.5) 0.011 1661 (41.0) 224 (55.9)  < 0.001

BMI, mean (SD) 23.8 (4.2) 23.8 (4.2) 23.3 (4.7) 0.339 23.8 (4.2) 23.2 (4.7) 0.114 23.7 (4.2) 24.2 (4.6) 0.049

Smoking, n (%) 618 (13.9) 599 (13.8) 19 (18.6) 0.21 594 (13.9) 24 (15.0) 0.768 545 (13.5) 73 (18.2) 0.011

Emergency, n (%) 2186 (49.1) 2129 (49.0) 57 (55.9) 0.202 2106 (49.1) 80 (50.0) 0.889 2062 (51.0) 124 (30.9)  < 0.001

ASA-PS classification

ASA-PS 1, n (%) 61 (1.4) 60 (1.4) 1 (1.0)  < 0.001 60 (1.4) 1 (0.6)  < 0.001 60 (1.5) 1 (0.2)  < 0.001

ASA-PS 2, n (%) 1031 (23.2) 1026 (23.6) 5 (4.9) 1026 (23.9) 5 (3.1) 987 (24.4) 44 (11.0)

ASA-PS 3, n (%) 3150 (70.8) 3073 (70.7) 77 (75.5) 3041 (70.9) 109 (68.1) 2858 (70.6) 292 (72.8)

ASA-PS 4–5, n (%) 206 (4.6) 187 (4.3) 19 (18.6) 161 (3.7) 45 (28.1) 142 (3.5) 64 (16.0)

Anesthesia

GA, n (%) 4191(94.2) 4097 (94.3) 94 (92.2) 0.49 4039 (94.2) 152 (95.0) 0.797 3806 (94.0) 385 (96.0) 0.135

CVC, n (%) 267 (6.0) 242 (5.6) 25 (24.5)  < 0.001 227 (5.3) 40 (25.0)  < 0.001 198 (4.9) 69 (17.2)  < 0.001

Arterial line n (%) 1367 (30.7) 1301 (29.9) 66 (64.7)  < 0.001 1275 (29.7) 92 (57.5)  < 0.001 1197 (29.6) 170 (42.4)  < 0.001

Laboratory data

ALT, mean (SD) 29.3 (59.1) 28.0 (29.1) 82.6(338.3) 0.107 27.6(27.8) 73.1(273.4) 0.037 26.4 (24.0) 58.4 (179.1)  < 0.001

eGFR, mean (SD) 76.2 (30.8) 76.3 (30.3) 71.2 (45.8) 0.267 76.2 (30.0) 75.7 (47.5) 0.898 74.7 (28.5) 90.9 (45.3)  < 0.001

Hb, mean (SD) 10.8 (1.6) 10.9 (1.6) 9.7 (1.5)  < 0.001 10.9 (1.6) 9.9 (1.5)  < 0.001 10.9 (1.6) 10.3 (1.6)  < 0.001

aPTT, mean (SD) 28.0 (4.3) 27.9 (4.2) 31.4 (8.2)  < 0.001 27.9 (4.2) 30.1 (7.2)  < 0.001 27.9 (4.2) 29.0 (5.7)  < 0.001

PT, mean (SD) 10.9 (1.6) 10.8 (1.4) 12.5 (4.1)  < 0.001 10.8 (1.4) 11.9 (3.5)  < 0.001 10.8 (1.5) 11.4 (2.4)  < 0.001

Platelet, mean(103) (SD) 231.9(90.6) 232.4(89.1) 212.2(139.8) 0.151 231.4(86.6) 246.5 (164.5) 0.249 226.6(81.6) 285.3(144.3)  < 0.001

Comorbidity

Respiratory, n (%) 457 (10.3) 425 (9.8) 32 (31.4)  < 0.001 414 (9.7) 43 (26.9)  < 0.001 376 (9.3) 81 (20.2)  < 0.001

Diabetes, n (%) 1079 (24.3) 1049 (24.1) 30 (29.4) 0.266 1038 (24.2) 41 (25.6) 0.751 1005 (24.8) 74 (18.5) 0.005

Hypertension, n(%) 1795 (40.4) 1744 (40.1) 51 (50.0) 0.057 1732 (40.4) 63 (39.4) 0.861 1683 (41.6) 112 (27.9)  < 0.001

Liver disease, n (%) 174 (3.9) 166 (3.8) 8 (7.8) 0.061 163 (3.8) 11 (6.9) 0.078 149 (3.7) 25 (6.2) 0.017

Malignancy, n (%) 408 (9.2) 387 (8.9) 21 (20.6)  < 0.001 386 (9.0) 22 (13.8) 0.057 361 (8.9) 47 (11.7) 0.078

Heart disease, n (%) 565 (12.7) 541 (12.4) 24 (23.5) 0.002 531 (12.4) 34 (21.2) 0.001 508 (12.6) 57 (14.2) 0.382

CKD-stage 1, n (%) 1477 (32.5) 1412 (32.5) 35 (34.3)  < 0.001 1386 (32.3) 61 (38.1)  < 0.001 1225 (30.3) 222 (55.4)  < 0.001

CKD-stage 2, n (%) 1783 (40.1) 1757 (40.4) 26 (25.5) 1746 (40.7) 37 (23.1) 1703 (42.1) 80 (20.0)

CKD-stage 3, n (%) 865 (19.4) 849 (19.5) 16 (15.7) 837 (19.5) 28 (17.5) 816 (20.2) 49 (12.2)

CKD-stage 4, n (%) 177 (4.0) 166 (3.8) 11 (10.8) 162 (3.8) 15 (9.4) 156 (3.9) 21 (5.2)

CKD-stage 5, n (%) 176 (4.0) 162 (3.7) 14 (13.7) 157 (3.7) 19 (11.9) 147 (3.6) 29 (7.2)

Stroke, n (%) 467 (10.5) 450 (10.4) 17 (16.7) 0.058 445 (10.4) 22 (13.8) 0.217 430 (10.6) 37 (9.2) 0.432

Dementia, n (%) 377 (8.5) 353 (8.1) 24 (23.5)  < 0.001 347 (8.1) 30 (18.8)  < 0.001 333 (8.2) 44 (11.0) 0.074

Schizophrenia, n (%) 32 (0.7) 31 (0.7) 1 (1.0) 0.525 31 (0.7) 1 (0.6) 1.000 25 (0.6) 7 (1.7) 0.021
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Table 2  The correlation coefficients between each feature and each outcome

Abbreviations: ASA-PS American Society of Anesthesiologist-physical status, CVC Central venous catheter, ALT Alanine aminotransferase, eGFR Estimated glomerular 
filtration rate, aPTT activated partial thromboplastin time, CKD Chronic kidney disease

Features Outcome

Composite adverse ICU admission Prolonged hospital stay

Age 0.054 0.034 -0.080

Sex 0.033 0.040 0.086

Body Mass Index -0.014 -0.028 0.031

Smoking 0.021 0.006 0.039

Emergency 0.021 0.003 -0.115

ASA-PS 0.094 0.158 0.146

General anesthesia -0.014 0.006 0.024

CVC 0.119 0.154  0.148

Arterial line 0.113 0.112 0.080

ALT 0.029 0.055 0.144

eGFR -0.025 -0.010 0.127

Hemoglobin -0.102 -0.110 -0.103

aPTT 0.078 0.060 0.052

Prothrombin time 0.096 0.088 0.106

Platelet -0.056 -0.016 0.120

Respiratory disease 0.106 0.106 0.103

Diabetes Mellitus 0.025 0.014 -0.026

Hypertension 0.033 0.002 -0.065

Liver disease 0.031 0.030 0.038

Malignancy 0.061 0.031 0.028

Heart disease 0.050 0.050 0.014

CKD stage 0.031 0.023 -0.097

Stroke 0.053 0.041 -0.009

Dementia 0.083 0.071 0.028

Table 3  Predictive performance of machine learning algorithms 
on primary composite adverse outcomes*

* Total 102 patients had primary composite adverse outcomes (Primary 
composite adverse outcomes included in-hospital mortality (and death in 48 h 
after discharge), sepsis, acute myocardial infarction, acute stroke, respiratory, 
liver and renal failure

Abbreviations: AUROC area under receiver operating characteristic curve, CI 
confidence interval, SVM support vector machine, KNN K nearest neighbor, light 
GBM light gradient boosting machine, MLP multi-layer perception, XGBoost 
extreme gradient boosting

Algorithm Accuracy Sensitivity Specificity AUROC (95%CI)

Logistic Regres‑
sion

0.699 0.710 0.699 0.794 (0.718–0.869)

Random Forest 0.690 0.677 0.690 0.776 (0.704–0.848)

SVM 0.716 0.710 0.716 0.768 (0.677–0.860)

KNN 0.706 0.516 0.711 0.644 (0.542–0.746)

lightGBM 0.703 0.710 0.703 0.786 (0.706–0.867)

MLP 0.691 0.677 0.692 0.777 (0.684–0.859)

XGBoost 0.638 0.645 0.638 0.734 (0.636–0.831)

Table 4  Predictive performance of machine learning algorithms 
on ICU admission*

* ICU admission: 160 patients

Abbreviations: ICU intensive care unit, AUROC area under receiver operating 
characteristic curve, CI confidence interval, SVM support vector machine, KNN 
K nearest neighbor, light GBM light gradient boosting machine, MLP multi-layer 
perception, XGBoost extreme gradient boosting, CI confidence interval

Algorithm Accuracy Sensitivity Specificity AUROC (95%CI)

Logistic Regres‑
sion

0.791 0.792 0.791 0.856 (0.804–0.908)

Random Forest 0.760 0.750 0.760 0.844 (0.788–0.899)

SVM 0.706 0.708 0.706 0.730 (0.648–0.812)

KNN 0.658 0.542 0.662 0.630 (0.549–0.712)

lightGBM 0.769 0.771 0.769 0.842 (0.788–0.896)

MLP 0.734 0.812 0.731 0.829 (0.779–0.885)

XGBoost 0.709 0.708 0.709 0.825 (0.772–0.878)
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Table 5  Predictive performance of machine learning algorithms on prolonged length-of-stay*

*  Prolonged length-of-stay: hospital stay longer than that of 90 percentiles in the validated cohort. Prolonged hospital stay: 401 patients

Abbreviations: AUROC area under receiver operating characteristic curve, SVM support vector machine, KNN K nearest neighbor, light GBM light gradient boosting 
machine, MLP multi-layer perception, XGBoost extreme gradient boosting, CI confidence interval

Algorithm Accuracy Sensitivity Specificity AUROC (95% CI)

Logistic Regression 0.745 0.742 0.745 0.831 (0.791–0.871)

Random Forest 0.778 0.783 0.778 0.854 (0.818–0.890)

SVM 0.651 0.650 0.651 0.730 (0.679–0.780)

KNN 0.643 0.625 0.644 0.681 (0.627–0.736)

lightGBM 0.773 0.767 0.774 0.853 (0.815–0.892)

MLP 0.727 0.741 0.726 0.824 (0.791–0.871)

XGBoost 0.747 0.750 0.747 0.837 (0.797–0.876)

Fig. 2  A Snapshot of the web-based application in the hospital information system

Table 6  Comparison of AI models with ASA-PS for primary composite adverse outcomes, ICU admission and prolonged length of 
hospital stay

a  PLOS Prolong length of hospital-stay
b  Using logistic regression for AI models for primary composite adverse outcomes and ICU admission
c  Using Random Forest for AI model for PLOS
%  Delong test

Outcome Model Accuracy Sensitivity Specificity AUC (95%CI) P-value%

Composite adverse ASA 0.326 0.896 0.262 0.629 (0.590–0.668)  < 0.001
bAI model 0.538 0.903 0.529 0.794 (0.718–0.869)

ICU admission ASA 0.931 0.240 0.958 0.692 (0.645–0.738)  < 0.001
bAI model 0.979 0.240 0.979 0.856 (0.804–0.908)

aPLOS ASA 0.336 0.909 0.279 0.618 (0.582–0.654)  < 0.001
cAI model 0.649 0.908 0.624 0.854 (0.818–0.890)
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outcomes (0.776 vs. 0.629), ICU admission (0.844 vs. 
0.629), and PLOS (0.854 vs. 0.618).

The incidences of adverse outcomes before and after 
AI‑assisted application deployment
Table  7 demonstrates the demographics and incidences 
of adverse outcomes in 545 and 500 patients before and 
after implementing the online web-based application. 
There was no statistically significant decrease in the inci-
dence of primary composite adverse events (3.3 vs. 1.6%, 
p = 0.117) or ICU admission (4.4 vs. 2.4%, p = 0.109) after 

the web-based application was initially employed for clini-
cal use.

The satisfaction score web‑based application 
from anesthesiologists
The AI Assist Application was launched on July 1, 2020, 
and by April 30, 2021, a total of 500 patients were evalu-
ated under the assistance of AI. Figure 3 illustrates that 
the satisfaction score rose from 3.21 ± 0.51 (1st month 
online) to 4.70 ± 0.56 (10th month). The score was signifi-
cantly higher starting in the 4th month after the applica-
tion was launched (P < 0.01).

Discussion
In this retrospective study using the HIS database, 
machine learning methods were applied in our hospital-
specific real-world medical domain to assist anesthesi-
ologists in their preoperative risk assessment for patients 
required to undergo hip fracture repair surgery in terms 
of primary composite adverse outcomes (mortality and 
major organ injuries), the need for ICU admission and 
PLOS. The newly developed AI assist application was 
found to have significantly higher sensitivity, specific-
ity, accuracy, and performance (AUROC) than that of 
the ASA-PS, the traditional and most widely used risk 
stratification method. The major strength of this study 
is its successful integration of the AI-assisted app into 
the hospital’s HIS system. The novel contribution of this 
study is that the machine learning algorithm empowered 
the ASA-PS scoring, allowing more specific prognostic 
assessments for patients undergoing hip surgery. Moreo-
ver, this online app is user-friendly and received high sat-
isfaction scores from anesthesiologists who used it.

Machine learning can simultaneously deal with numer-
ous variables by building statistical models based on 

Table 7  The incidences of major adverse outcomes before and 
after AI web-based application online use

*  two-tailed student t test or chi-squared test, as appropriate
a  Application online was used since 2020/07/01
b  PLOS prolonged length-of-stay

Demographics Before AIa After AI P-Value*

2019/07–2020/04 2020/07–2021/04

N = 545 N = 500

Age, mean (SD) 65.1 (18.5) 64.7 (17.9) 0.238

Sex, female, n (%) 306 (56.1) 252 (50.4) 0.072

Sex, male, n (%) 239 (43.9) 248 (49.6)

ASA-PS classification

ASA-1, n (%) 9 (1.7) 6 (1.2) 0.207

ASA-2, n (%) 141 (25.9) 104 (20.8)

ASA-3, n (%) 376 (69.0) 368 (73.6)

ASA-4–5, n (%) 19 (3.5) 22 (4.4)

Primary composite 
outcome, n (%)

18 (3.3) 8 (1.6) 0.117

ICU admission, 
n (%)

24 (4.4) 12 (2.4) 0.109

PLOSc, n (%) 50 (9.2) 54 (10.8) 0.439

Fig. 3  Anesthesiologists’ satisfaction ratings of the web-based application since its implementation
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outliers and nonlinear interactions among variable [20, 
21]. To use our application, the anesthesiologist, after 
evaluating the patient, first inputs the ASA-PS followed 
by the mode of anesthesia and whether an arterial line 
or a ventral venous catheter is anticipated. Then, the AI 
assist application automatically captures 22 features, 
which are important independent risk factors [22, 23], 
from the HIS. All the anesthesiologist has to do is click 
the calculation button. The application will start to run 
and calculate the risk scores for in-hospital mortality, 
ICU admission, and PLOS. The results of the calculation 
are then displayed on the computer screen.

The results of this study demonstrated that modern AI 
computer systems can not only collect and display data 
but can also play an active role in assisting physicians 
with their risk assessments, allowing them to make a 
shared decision with the patient or their family members.

Previous machine learning applications in hip frac-
ture have demonstrated high potential for automated 
detection of hip fractures on radiographs and hip frac-
ture risk prediction [24–26]. Further, recent studies 
have tried to build a precise model for mortality of hip 
fracture surgery [27]. This current research not only 
developed an AI-based risk predictive model that per-
formed better than ASA-PS in terms of risk assessment 
for hip fracture surgery but also successfully incorpo-
rated the application into the hospital’s existing HIS, 
allowing it to be used in daily practice. It is important 
for hospitals to establish a more reliable and avail-
able model of risk assessment for patients who need to 
undergo hip fracture surgery. A precise model could 
help improve physicians’ shared decision-making with 
their patients and assist in evaluating the need for criti-
cal care monitoring after surgery. Machine learning 
techniques can integrate a large amount of data already 
captured in the HIS, which offers a prediction model 
with better predictive performance and facilitates 
automation.

This research does not suggest the discontinuation of the 
ASA-PS system nor does it refute the need for human intel-
ligence; instead, it aims to add a machine-learning algorithm 
to facilitate efficiency in preoperative risk assessment. Anes-
thesiologists need to judge the patient’s ASA physical status 
and decide whether an arterial line or CVC is anticipated 
perioperatively. The AI assist application takes the above 
information, in conjunction with patient data captured from 
the HIS, to calculate the risk of adverse events.

Machine learning algorithms have been proven to more 
accurately assess the risks associated with anesthesia and 
surgery [28, 29]. A study published by Ehlers et al. [28] used 
the insurance claims database and calculated the Naïve 
Bayes algorithm to predict the risk of postoperative compli-
cations and showed superiority to Charlson’s comorbidity 

index. In the present study, more variables were adapted, 
and the data were used for the training of 7 algorithms. A 
recent study by Li et al. [30] reported AI prediction using 
the random forest algorithm to predict 1-year mortality 
after hip repair surgery. They collected data from 1,330 and 
744 patients to train and validate the AI algorithm, respec-
tively. In the present study, data from 3,114 patients for 
training and 1,334 for validation were included. Because 
the sample size is greater, the statistical power is therefore 
stronger. Moreover, other than mortality, the risk of ICU 
admission and PLOS were also estimated.

Aside from the widely accepted ASA-PS system, there 
are also some pre-anesthetic risk stratification tools being 
used in hospitals, such as the ACS-NSQUIP, an open-
access online tool based on the logistic model [31]. Our 
AI application shares some similarities with ACS-NSQIP. 
Both tools have some variables in common, such as age, 
sex, ASA, emergency surgery, and CPT procedure code. 
The ACS-NSQIP is calculated based on logistic regres-
sion, while our AI application used seven algorithms, 
including logistic regression, for machine learning. After 
comparing the AUROC of these algorithms, the best 
algorithm was selected to build the AI prediction tool. 
Moreover, although there is now an open-excess ACS-
NSQIP, it has not been built into the Chi Mei Medical 
Center HIS system yet. Therefore, the present study did 
not include this as a reference comparison. Further com-
parative studies are very worth conducting in the future.

Although anesthesiologists have affirmed the online 
application of this study’s app, we still have not observed a 
significant effect on reducing the incidence of adverse out-
comes, ICU admission, and PLOS. It may require a longer 
observation time and a larger population of patients to jus-
tify the efficacy of this web-based application.

Limitations
Some limitations are inherent in retrospective machine 
learning projects using hospital-specific databases. First, 
the accuracy of prediction algorithms at specific hospitals 
may be limited by hospital-specific factors. However, the 
methodology could theoretically be generalized to simi-
lar hospitals with similar patient races or under similar 
health insurance systems. Second, this study was depend-
ent on the correctness of the ICD-9- or ICD-10-CM coding 
while identifying study cases, comorbidities, and complica-
tions. These codes were reviewed and validated by audi-
tors of medical records for the insurance system to ensure 
the accuracy of the claims; however, there is still the pos-
sibility of miscoding and misclassifying some diseases and 
conditions. Third, the study’s data were extracted from a 
single medical institution and its 2 branch hospitals; thus, 
an underlying referral bias might have existed. Therefore, to 
obtain a more generalizable result, external validation using 
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patient cohorts from other institutions is required. Fourth, 
since this is a retrospective study, further validation in a 
prospective manner to demonstrate predictive capability is 
needed. Fifth, postoperative mortality in the study’s model 
was limitedly captured from in-hospital complications and 
in-hospital death or death within 48 h after discharge. Our 
models demonstrated relatively short-term mortality or 
adverse events because some patients, especially those who 
had complications or were dissatisfied with the surgical 
service, might have transferred to other hospitals without 
a referral. Therefore, the study endpoints were limited to 
the in-hospital period. Sixth, non-geriatric hip fracture may 
have different pathophysiologic mechanisms from geriat-
ric hip fractures and may require different assessment tool. 
In our preliminary analysis, we subgrouped study patients 
into those above 50 (n = 3551) and below 50 years (n = 897), 
however, this number of non-geriatric patients was insuffi-
cient to support machine learning. Therefore, the current 
research cannot meet this need.

Conclusions
The AI assist application developed using a machine 
learning algorithm was found to be helpful for anesthe-
siologists in evaluating the risks associated with hip sur-
gery more efficiently and accurately than the traditional 
ASA-PS stratification method. Although this study may 
be limited by hospital-specific factors, it could still be 
generalized to hospitals with similar patient races and 
comparable health insurance systems. Moreover, this 
web-based application gained a high satisfaction score 
from anesthesiologists, which implies an urgent need for 
automated artificial intelligence assistance in preopera-
tive risk assessment.
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